Notícias

porDr. Alexandre

PBL: Radiotelescópio do LabMax é usado em aula prática de engenharia para observação solar

No dia 29 de agosto de 2019, os alunos do 4° semestre de engenharia de controle e automação do Campus Cubatão do IFSP realizaram uma aula “estrelar” ao utilizarem o Radiotelescópio do LabMax para observar as atividades solares com o intuito de entender fenômenos de clima espacial que envolvem nosso planeta e é regido por nossa estrela, o Sol. A aula prática foi organizada pelo Dr. Alexandre Maniçoba de Oliveira, com o apoio do Coordenador do Curso, Me. Marcelo Coelho e da Drª Anna Karina.

O experimento extra-classe foi realizado em um dia de céu de brigadeiro, o que proporcionou ótimas medidas da atividade solar.

Ilustração da absorção atmosférica para diferentes comprimentos de ondas eletromagnéticas (SILVA, 2016)

A aula foi idealizada a partir do uso da metodologia PBL (Problem Based Learning) e proporcionou aos alunos, um ambiente de aprendizado auspicioso para a compreensão dos assuntos estudados na disciplina de Física Teórica III, onde na ocasião do experimento, estava sendo abordado conceitos de Transmitância Atmosférica de ondas eletromagnéticas.

Artigo sobre o uso de Radiotelescópio em aulas práticas.

SOBRE A PBL

Na escola de medicina da Universidade McMaster, no Canadá, por volta dos anos 60, uma nova metodologia de ensino foi criada, a PBL. Esta metodologia foi baseada no estudo de casos da faculdade de direito da Universidade Harvad, nos Estados Unidos da América e também em um método de aprendizagem e ensino na área de medicina da Universidade Case Western Reserve, neste mesmo país.

Fonte: (BOKEY, CHAPUIS e DENT, 2014)

Ribeiro (2005), conceitua a PBL hoje como um método de ensino pautado no estudo de caso e resolução de problemas reais, de maneira a instigar no aluno, ao menos: pensamento crítico, conhecimento do assunto e habilidades profissionais. O último item, em geral não é adquirido no ambiente escolar, ao contrário disso, tem sido desenvolvido somente na atuação no mercado de trabalho, o que nem sempre é possível, visto que sem estas habilidades, o aluno recém-formado pode nem mesmo ser inserido em um emprego.

O aluno, quando exposto ao aprendizado, erguido com os fundamentos da PBL, terá a oportunidade de, ao solucionar o problema proposto em sala de aula, pensar, expressar suas opiniões, desenvolver suas habilidades de trabalho em equipe e liderança e adquirir ainda mais respeito mútuo e responsabilidade. Tudo isso simultaneamente a aquisição de conhecimento, necessário para solucionar o desafio de maneira vencedora, tornando-se um pesquisador.

Outro conceito para a PBL é apresentado por Barrows (2002), onde usa-se alguns conceitos-chave para isso, sendo eles:

  • Os alunos são expostos a problemas estruturados de maneira que possam discutir sobre estes e assim tenham uma série de pensamentos e ideias a respeito das prováveis causas dos problemas, bem como as formas de solucioná-lo.
  • A PBL é uma metodologia centralizada nos alunos, sendo estes os protagonistas na determinação do conjunto de conhecimentos a serem aprendidos para que seja possível resolver o problema. Os alunos encarregam-se de sozinhos identificarem os problemas-chave e a melhor maneira de trata-los, não obstante, necessitam identificar quais áreas de conhecimento eles não dominam, e assim determinam o que deve ser estudado para sanar o problema.
  • Os docentes agem como facilitadores, como orientadores que realizam questionamentos e levantamentos metacognitivos aos alunos com a intensão de leva-los a pensar.
  • A base da PBL é a autenticidade, pois os alunos têm a oportunidade de resolver o problema e assim experimentar de forma profissional a resolução deste.

Voltando para os conceitos de PBL segundo Ribeiro (2005) e pautando-nos pelos escritos de Masetto (2004), a PBL não pode ser considerada e reduzida a um conjunto de técnicas em que os alunos se apoiam para solucionar o problema, mas sim uma metodologia de aprendizagem baseada na exposição da prática de solução de problemas que, em geral, envolvem a aquisição de conhecimentos de maneira integrada e estruturada (BARROWS, 1996).

Este ambiente de aprendizado é construído em torno de problemas reais, de tal forma que haja o desenvolvimento de habilidades para o futuro profissional, sendo elas: trabalho em equipe, aprendizagem autônoma, liderança e conhecimentos específicos sobre o assunto. Lembrando que o aluno é o principal responsável por conseguir seu próprio conhecimento.

Sobre a aprendizagem autônoma, Schmidt (1993) acredita que seja esta habilidade a maior recompensa, a maior incentivadora que leva os alunos e todos os envolvidos no processo de aprendizagem baseada em problemas a conhecerem melhor o mundo real, àquele distante das teorias, leis, conceitos e livros, àquele que não possui enunciado e que traz como que um ambiente de simulação do que há por vir na vida do futuro profissional.

Já segundo o educador, médico e escritor Oliver Wendell Holmes, a mente, uma vez expandida por ideias maiores, jamais voltará ao seu tamanho original. Neste notável pensamento, Holmes leva-nos a refletir que partindo do princípio que quando os alunos descobrem “o quão bons podem ser”, eles jamais, repito, eles jamais serão como antes. Além disso, expandem seus limites, outrora impostos pela sua condição tradicional (MACKAY, 1991).

Ainda que a PBL seja um modelo de educação pautada na resolução de problemas e que traga consigo uma gama de vantagens, já apresentadas anteriormente, uma dúvida é suscitada: Pode a PBL ser perfeita e livre de problemas pedagógicos?

A resposta é simples: Não! A PBL tem seus problemas.

Assim sendo, em total contraste ao que foi abordado até aqui, e para balancear o entendimento da prática da PBL, podemos nos lastrear nos estudos de Kirschener, Clark e Sweller (2006) que afirmam veemente que a PBL, é sem sucesso e ineficaz para o aprendizado.

Já para Kolmos e Algreen-Ussing (2001), a primeira, pesquisadora do segmento de educação baseada em problemas nos cursos de engenharia da Organização das Nações Unidas para a Educação, a Ciência e a Cultura (UNESCO), a prática da PBL inspira um elevado nível de engajamento dos alunos, sobretudo quanto aos estudos, por consequência disso, desenvolvem um nível forte e complexo de compreensão.

Ainda assim, Graaff e Kolmos (2003) reforçam que existe uma desvantagem em relação a prática da PBL: A possibilidade de haver “lacunas” em algumas partes específicas do conhecimento adquirido. Entretanto, é fundamental que os alunos participantes deste método de aprendizado levem consigo que serão pesquisadores, para o resto da vida, e que precisam tomar responsabilidade pelos seus próprios conhecimentos adquiridos.

Tanto para Schmidt (1993 e 2002) quanto para Regehr e Norman (1996), ao aplicarmos a metodologia PBL, observamos que o nível de conhecimento dos alunos em relação ao problema proposto, determina a natureza e a quantidade de conhecimentos novos que devem ser adquiridos.

Para estes pesquisadores há certa preocupação sobre como os alunos terão acesso ao conhecimento adquirido e memorizado, além de defenderem que nesse ponto, quando se refere a memorização do conhecimento, a PBL ajuda, pois desde o início, o problema é contextualizado e o aprendizado memorizado como experiência e não como enunciados e teorias.

Quando eles (os alunos) forem expostos, em suas vidas profissionais, a desafios que exijam estes conhecimentos, terão plenas condições de utilizá-los. Isso se deve ao fato de que durante a etapa de aquisição e memorização do, os próprios alunos estruturaram em suas memórias todo este conhecimento.

Esta forma de memorização proporcionada pela PBL é diferente de apenas gravar informações, ou seja, estruturam sua forma acessar a informação, o conhecimento. A PBL muda a forma de pensar e resolver um problema, esse método pode tornar o conhecimento mais ou menos acessível na memória, dependendo principalmente de como a pessoa o organizou em sua memória, sobretudo com base nas experiências vividas durantes as aulas.

   Para Powell (2000) há vantagens da utilização da PBL especificamente no ensino na engenharia, sendo elas:

  • Durante a realização do trabalho em equipe, os alunos aprendem a expressar suas opiniões e sobretudo a ouvir o que os colegas pensam, desta maneira acabam estabelecendo uma série de parcerias e interagindo com o corpo docente. Eles também aprendem a trabalhar melhor com prazos e descobrem o que já sabem e o que necessitam aprender para resolver o problema;
  • A metodologia PBL é uma ferramenta útil contra a evasão escolar, pois os alunos se comprometem com o grupo e criam expectativas para ver o problema solucionado, buscando o sucesso.

Ainda segundo Powell (2000), há algumas desvantagens na PBL:

  • Em matérias mais avançadas que necessitam de problemas complexos, é consideravelmente difícil obter todo o conhecimento necessário para resolve-lo;
  • Nota-se que os alunos têm dificuldades para aprender sozinhos matérias como eletromagnetismo e física, por exemplo;
  • Os alunos devem trabalhar no ritmo do grupo, o que pode não ser muito confortável para alguns;
  • Para os professores pode surgir o estresse, sobretudo se o grupo questionar assuntos avançados e que não sejam da área do docente, obrigando-o direcioná-los a algum profissional especialista;

Referências

BARROWS, H. S. Problem-based learning in medicine and beyond: A brief overview. New directions for teaching and learning, vol. 68, p.3-12, 1996.

BARROWS, H. S. Is it Truly Possible to have such a thing as PBL. Distance Education, Vol. 23, n.1, 119-122, 2002.

BOKEY, Les; CHAPUIS, Pierre H.; DENT, Owen F. Problem-based learning in medical education: one of many learning paradigms. Med J Aust, v. 201, n. 3, p. 134-136, 2014.

GRAAFF, Erick de; KOLMOS, Anette. Characteristics of Problem Based Learning. Países Baixos: Universidade Técnica de Delft, 2003.

KIRSCHNER, P. A., SWELLER, John, & CLARK, Richard E. Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, vol. 41, n.2, p.75-86, 2006.

KOLMOS, A.  and ALGREEN-USSING, H. Implementing PBL and project organized curriculum: Acultural change, Das Hochschulwesen, vol. 1, 2001.

MACKAY, Alan L. A Dictionary of Scientific Quotation. Ed. Galliard (Printers) Ltd. Norfolk. P 121. 1991

MASETTO, M. T. PBL na educação. In: ENDIPE, 12, 2004, Curitiba. Anais. Curitiba: Editora Universitária Champagnat, v. 2, p. 181-189, 2004.

M. P. C. SLVA, “A observação da Lua com instrumentos ópticos e o ensino de astronomia: Articulações entre a experimentação e a sala de aula”.
Dissertação de Mestrado. Universidade de São Paulo, 2016.

POWELL, P. From classical to project-led education. In: POUZADA, A. S. (ed.). Project based learning: project-led education and group learning. Guimarães: Editora da Universidade do Minho, p. 11-40. 2000.

REGEHR, G.; NORMAN, G. R. Issues in cognitive psychology: implications for professional education. Academic Medicine, v. 71, n. o, p. 988-1001, 1996.

RIBEIRO, L. R. de C. A aprendizagem baseada em Problemas (PBL): uma implementação na educação em engenharia  na voz  dos atores. São Carlos: Universidade Federal de São Carlos, 2005

SCHMIDT, H. G. Foundations of problem-based learning: some explanatory notes. Medical Education, v. 27, p. 422-432, 1993.

SCHMIDT, H. G. As bases cognitivas da aprendizagem baseada em problemas. In: MAMEDE, S.; PENAFORTE, J (orgs.). Aprendizagem baseada em problemas: anatomia de uma nova abordagem educacional. São Paulo: Hucitec/ESP-CE, p. 80-108. 2001.

porRaimundo Eider

Curso de QucsStudio

O Labmax irá realizar um curso de simulador de circuitos de micro ondas
voltado a comunidade acadêmica , na próxima quinta-feira, 29 de agosto de 2019 das 13 as 17 horas, no Instituto Federal de São Paulo-IFSP, campus Cubatão, laboratório 213.

Segue abaixo o plano de curso:

Ementa:

O curso aborda o desenvolvimento de esquemáticos de circuitos de micro ondas e simulações com uso do software QucsStudio.

Objetivos:

Projetar circuitos de micro ondas no QucsStudio. Realizar simulações de: corrente continua, corrente alternada, parâmetro S e transiente de circuitos no software.

Conteúdo:

– Eletromagnetismo;

– Circuitos de micro ondas;

– Componentes eletrônicos;

– Transformada de Fourier;

Faça sua inscrição através do formulário abaixo: ENCERRADAS!!!


porDr. Antonio Mendes de Oliveira Neto

LittleMax

E o dia Nacional de Combate ao Câncer Infantil – 23 de Novembro.

LEI Nº 11.650, DE 4 DE ABRIL DE 2008

Os objetivos do Dia Nacional de Combate ao Câncer Infantil são:

I – estimular ações educativas e preventivas relacionadas ao câncer infantil;

II – promover debates e outros eventos sobre as políticas públicas de atenção integral às crianças com câncer;

III – apoiar as atividades organizadas e desenvolvidas pela sociedade civil em prol das crianças com câncer;

IV – difundir os avanços técnico-científicos relacionados ao câncer infantil;

V – apoiar as crianças com câncer e seus familiares.

Fomentado pela Pró-reitoria de Pesquisa e Pós-graduação (PRP) do IFSP via Edital n°. 823/2018.

porDr. Arnaldo De Carvalho Júnior

1º SABADUINO do IFSP Cubatão reúne tecnologia e inovação

No dia 1º de junho, o Câmpus Cubatão sediou a primeira edição do Sabaduino, referente à plataforma livre Arduino, que permite desenvolver projetos de automação em placas de forma funcional e fácil, sendo acessível a estudantes e projetistas amadores.

Estudantes dos cursos técnico e superior em Automação Industrial e Engenharia de Controle e Automação, assim como convidados externos, puderam desfrutar de uma manhã de muita aprendizagem prestigiando exposições de trabalhos, oficinas e palestras sobre a plataforma.

Os trabalhos de conclusão de curso dos estudantes do câmpus chamaram a atenção, tanto pela inovação quanto pela qualidade apresentadas. Estufas, torres de resfriamento, garras manipuladoras e braço robótico foram alguns dos projetos expostos e criados com uso da plataforma Arduino. Segundo o professor Marcelo Coelho, coordenador do curso de Engenharia, um dos pontos altos do evento foi a possibilidade de integrar os cursos de tecnologia em Automação Industrial e Análise e Desenvolvimento de Sistemas, promovendo assim parceria nas pesquisas desenvolvidas.

Na oficina, houve a aplicação da plataforma Arduino na transmissão de dados para a nuvem. Este uso de armazenamento de informações nos processos industriais é uma inovação e faz parte da Industria 4.0, assim denominada por especialistas da área.

Por sua vez, as palestras envolveram aplicações práticas da plataforma, como por exemplo na configuração de impressoras 3D e sinais analógicos, permitindo aos participantes, sobretudo aos estudantes do Câmpus Cubatão, a aproximação com profissionais da comunidade externa.

O professor Arnaldo de Carvalho Junior, organizador do 1º Sabaduino, avalia que o evento ultrapassou as expectativas, servindo de referência aos próximos dessa natureza, como a Semana de Automação e a Semana Nacional de Ciência e Tecnologia, programados para outubro.

https://cbt.ifsp.edu.br/index.php/component/content/article/17-ultimas-noticias/812-evento-reune-tecnologia-e-inovacao

porDr. Alexandre

RESULTADO FINAL – Processo Seletivo Bolsista LABMAX/PRP PIBIFSP 2019

Resultado Final

Segue a Tabela com o Resultado Final do processo seletivo de Bolsa de IC 2019 LabMax. Parabéns aos alunos por superarem esse rigoroso processo de seleção.

O Laboratório Maxwell, instituído pela Portaria nº CBT.0130/2018 de 06/11/2018, tem como um de seus objetivos captar e gerir recursos para realizar a pesquisa aplicada e a inovação do arranjo produtivo de nosso país. Em vista disso, realizou-se um processo de seleção de aluno bolsista de Iniciação Científica, categoria PIBIFSP 2019 LABMAX/PRP, para desenvolver atividades em um projeto coordenado pelo Dr. Alexandre Maniçoba de Oliveira, sendo ele:

SISTEMA DE RASTREAMENTO DE CÂNCER CEREBRAL INFANTIL ATRAVÉS DE IMAGENS POR MICRO-ONDAS COM A ANTENA VIVALDI PALM TREE DE ALTA RESOLUÇÃO PARA DIAGNÓSTICO PRECOCE

A Iniciação Científica iniciou em Junho, com duração de 8 meses e irá remunerar o aluno bolsista com o valor de R$ 3.200,00 divididos em oito pagamentos mensais.

O atributo alt desta imagem está vazio. O nome do arquivo é resultado.jpg

Os interessados participaram do rigoroso processo de Seleção, sendo:

Documentação necessária:

  • Histórico Acadêmico;
  • Currículo Lattes Atualizado.

Critérios de Seleção:

  • Média das disciplinas (peso 3)
  • Produção Acadêmica (peso 3)
  • Entrevista (peso 4)

Notas para Produção Acadêmica:

  • 1 ou mais artigos em revista Qualis A ou B em Eng. IV – 10 pontos
  • 1 ou mais artigos em congressos internacionais em Eng. IV – 9 pontos
  • 1 ou mais artigos em revista Qualis C em Eng. IV – 8 pontos
  • 1 ou mais artigos em congressos nacionais em Eng. IV – 7 pontos
  • 1 ou mais artigos em revista multidisciplinar – 5 pontos
  • 1 ou mais artigos em congressos multidisciplinar – 3 pontos
  • demais casos – 0 pontos

Fora selecionado apenas a maior nota obtida.

Entrevista:

  • Tema da entrevista: Antena Vivaldi Palm Tree
  • Data e Horário: 05/06/2019 – 14h00 às 15h00
  • Local: LabMax – Sala 131 – Campus Cubatão

Inscrições

Resultado do processo seletivo que deu origem a essa bolsa:

porRaimundo Eider

Iniciação Científica – Projeto de um Gerador de Pulsos Eletromagnéticos

No período de 15 de abril de 2019 a 14 de maio de 2019, dando continuidade às atividades referente ao projeto de gerador de pulsos eletromagnético, foi realizado uma visita ao campus da UFABC em Santo André – SP com o intuito de promover um intercâmbio de informações sobre geradores de pulsos, com a equipe de pesquisa liderada pelo Dr. Marcelo Perotoni.

Além disso, foi desenvolvido, em ambiente Métodos Numéricos no software QucsStudio versão 2.5.7, um gerador de pulsos eletromagnético baseado em transistores bipolares do tipo NPN de alta taxa de transição de frequência (família BF) junto com um filtro passivo de 2º ordem.

Os transistores usados para geração de pulsos ultracurtos, na ordem de nano segundos, formaram a base da arquitetura de duas portas lógicas, uma OR e uma NOT, mas que juntas formaram uma única porta lógica do tipo NOR. Esse gerador foi baseado nos estudos de Jose Olger Vargas Garay  em sua dissertação de mestrado intitulada “Análise E Construção De Um Circuito Gerador De Pulsos UWB Para Aplicações De Radar De Penetração De Solo”.

A análise por métodos numéricos resultou em um pulso gerado pelo circuito proposto, como ilustrado na figura 1, atingindo, portanto, o objetivo pretendido para esta fase da pesquisa.

Figura 1: Pulso gerado.

Porém o maior desafio neste período foi analisar o pulso no domínio da frequência, pois há uma escassez de material bibliográficos e tutoriais que expliquem como obter essa análise, porém foi possível encontrar no “QucsStudio Tutorial Part 1: Simulations in the Time Domain and in the Frequency Domain” um material que pôde ajudar, como foi detectado uma carência de explicações das análise da frequência no domínio tempo, optaremos em fazer  uma demonstração passo-a-passo de como foi possível obter o espectro de um pulso a partir de um circuito pré-definido com intuito único de contribuir com a comunidade acadêmica e usuários do software QucsStudio.

Como o intuito é mostrar como geramos a análise do pulso no domínio da frequência, esse tutorial irá partir já do circuito gerador de pulsos eletromagnéticos e seu filtro. O circuito aqui utilizado nessa demonstração será baseado na porta lógica NOR com transistores, desenvolvido nos estudos de Garay, porém com pequenas alterações nos valores e parâmetros na fonte de pulso, na fonte de tensão contínua, nos resistores, no capacitor, nos transistores e no indutor. Na figura 2 poderá ser visto já montado na área de desenvolvimento do QucsStudio versão 2.5.7 o circuito, porém devemos nomear o ponto que desejamos obter as informações para análise, com isso terá que pressionar a tecla Ctrl+L para ativar essa função, depois clica no ponto do circuito que se deseja obter o sinal, pós escolha irá abrir uma janela, em que você deverá nomear o ponto escolhido, para desativar o comando ou qualquer outro é só pressiona a tecla Esc.

Figura 2: Circuito montado na área de desenvolvimento

Escolhendo o simulador, agora deverá clicar em Components, que fica no lado esquerdo da tela, como pode ser visto na figura 3 com destaque em vermelho, em seguida clica-se na aba em destaque azul na figura 3, escolhe simulations que irá apresentar diferentes parâmetros de simulação em seguida deverá ser escolhido o Transient simulation ,que está em destaque em verde na figura 3, ao clicar deverá arrastar até a área de desenvolvimento que ficará igual a figura 4.

Figura 3: Escolhendo o simulador
Figura 4: Simulador transiente na área de desenvolvimento

Escolhendo os parâmetros do Transient simulation, primeiro clica-se em cima do transient simulation com o botão direito do mouse que abrirá um nova aba, segundo clicará em Edit Properties, abrindo uma nova janela de propriedades escolheremos os parâmetros, primeiro  Stop e depois os Number, os pontos, que é possível observar na figura 5, é importante frisar que a quantidade de pontos no item Number da figura 5, em destaque em vermelho, deverá ser múltiplo de 2, devido propriedades matemáticas envolvidas na transformação da frequência no domínio do tempo agora é só clicar OK para confirmar os parâmetros escolhidos.

Figura 5: Configurando o Transient Simulation

Iniciando a simulação ao pressionar F2, ícone em destaque da figura 6, ou pressionar a tecla F2 irá surgir uma nova janela (Simulation Messages) como é possível ver na figura 6, após Progress completar os 100% aparecerá uma nova aba como na figura 7.

Figura 6: Iniciando a simulação
Figura 7: Nova aba para simulação

Escolhendo o gráfico para plotagem do sinal que se deseja analisar, primeiro clica em Cartessian,conforme em destaque no lado esquerdo da figura 8, depois como mostra a seta na figura 8 abaixo, seleciona o sinal que se deseja plotar no gráfico, aqui neste caso é o ponto que foi escolhido no início desse tutorial com nome de “ Out ”, depois selecionaremos a aba Limits, conforme destaque na figura 9, e finalmente iremos ajustar no item X-Axis os valores manualmente para obter uma melhor visualização do pulso no gráfico, é possível verificar na figura 9, agora clica-se em OK para confirmar as alterações.

Figura 8: Plotando gráfico de pulso
Figura 9: Plotando gráfico de pulso

Após confirmar as alterações no comando OK, figura 9, irá aparecer um pulso plotado em função do tempo, conforme a figura 10 abaixo.

Figura 10: Resultado do pulso no gráfico

Agora chegamos ao objetivo desse tutorial realizar a análise de frequência no domínio do tempo, para isso iremos usar a função “time2freq”, inicialmente escolhe-se o gráfico clicando em Cartessian, logo após abre-se uma janela com os parâmetros do gráfico, possível ver na figura 11, em sequência seleciona o sinal que se deseja plotar no gráfico, aqui neste caso é o ponto que foi escolhido no início desse tutorial com nome de “ Out ”, posteriormente, como em destaque em verde na figura 11, iremos usar a função “time2freq”, na seguinte forma: dB(time2freq(Out.Vt)), em que “time2freq” é que vai transformar a frequência no domínio do tempo e o dB irá converter o ganho para decibéis e finalmente clica-se em OK para confirmar os parâmetros definidos.

Figura 11: Configurações do gráfico da frequência no domínio do tempo

Após confirmar os parâmetros do gráfico no comando OK da figura 11, irá aparecer o gráfico de análise espectral do pulso conforme a figura 12 abaixo.

Figura 12: Gráfico da frequência no domínio do tempo

Na figura 13 podemos ver que a partir do gráfico 13 (a) foi possível gerar o gráfico 13 (b), graças a ferramenta disponibilizada pelo o QucsStudio 2.5.7 que utiliza-se da função “time2freq(ponto de análise)”, essa ferramenta possui a capacidade de fazer a Transformada Rápida de Fourier, em que é útil para análise de pulsos triangulares em circuito de banda ultra larga (UWB).

Figura 13: Gráfico do pulso no tempo (a), gráfico da frequência no domínio do tempo (b)

porDr. Alexandre Maniçoba de Oliveira

Iniciação Científica – Projeto De Antena Planar Do Tipo Patch com Geometria Fractal

Atualmente as antenas possuem um papel de extrema relevância, provendo avanços tecnológicos como a tecnologia 5G, desenvolvimento de aplicações e aparelhos médicos, satélites, comunicação sem fio, usos nos setores de defesa, um deles sendo a guerrilha eletrônica, e também nos setores comerciais. Buscamos desenvolver antenas patch de baixo custo que alcancem determinados marcadores de especificações em termos de largura de banda e ganho, não obstante considerando uma de suas principais características, o pequeno peso.

As antenas usualmente irradiam em apenas uma frequência, tendo isto em mente, ao desenvolver uma antena patch capaz de irradiar em várias frequências, as aplicações provindas destes resultados propiciam auspiciosamente, possibilidades e através destas aplicações novas soluções são geradas. Ao desenvolvermos uma antena patch com fractais de Koch, padrões geométricos que apresentam repetições infinitas no perímetro, e a alimentando por um micro linha, novos resultados foram obtidos.

Durante o meses de abril e maio, foram revisadas as bibliografias selecionadas segundo a metodologia top five, que consiste em utilizarmos os referências mais influentes na área em questão para escrevermos um artigo com alto fator de impacto, análises numéricas foram desenvolvidas e testadas.